Nếu \(\int f (x){\rm{ d}}x = {e^x} + \sin x + C\) thì \(f(x)\) bằng
\({e^x} + \sin x.\)
Tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {{{\left( {1 – c{\rm{osx}}} \right)}^n}\sin {\rm{x}}dx} \) có giá trị bằng:
\( - \frac{1}{{n + 1}}.\)
Diện tích hình phẳng giới hạn đường cong \(y = \frac{{2x – 1}}{{x + 1}}\) ; \(y = 0\) và \(x = 0;x = 1\) là
\(3\ln 2 - 2.\)
Trong các mệnh đề sau, mệnh đề nào SAI?
\(\int {\left[ {f\left( x \right).g\left( x \right)} \right]} dx\,\, = \int {f\left( x \right)} dx.\int {g\left( x \right)dx} .\)
Nếu \(f(1) = 12,f'(x)\) liên tục và \(\int\limits_1^4 {f'(x)dx = 17} \), giá trị của f(4) bằng:
9
Giá trị của \(\int\limits_{ – 1}^5 {\frac{1}{{x + 2}}} dx\) bằng
\(\ln \frac{7}{5}\).
Nguyên hàm của hàm số \(f(x) = x\cos x\) là:
\(x\sin x + \cos x + C.\)
Diện tích của phần hình phẳng gạch chéo (H.1) được tính theo công thức: 
\(S = \int\limits_0^1 {\frac{1}{3}{x^3}dx} .\)
Thể tích khối tròn xoay khi quay hình phẳng (H) xác định bởi các đường \(y = \frac{1}{3}{x^3} – {x^2},y = 0,x = 0,x = 3\) quanh trục Ox là:
\(\frac{{61\pi }}{{35}}.\)
Một học sinh giải bài toán tính \(\int_1^e {\ln xdx} \) như sau:
Bước 1: Chọn \(\left\{ \begin{array}{l}
u = \ln x\\
dv = dx
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
du = \frac{1}{x}dx\\
v = x
\end{array} \right.\)
Bước 2: \(I = \left. {x.\ln x} \right|_1^e – \int_1^2 {\frac{1}{x}.xdx} \)
Bước 3: \(I = \left. {e – \frac{{{x^2}}}{2}.\ln \left| x \right|} \right|_1^e\)
Bước 4: \(I = e – \frac{{{e^2}}}{2}\)
Trong các cách giải trên, sai từ bước nào?
Bước 3.
Thể tích vật thể tròn xoay của hình giới hạn bởi các đường: \(y = {x^2}\); y = 4; x = 0; x = 2; khi quay quanh trục Ox được tính bởi công thức:
\(\frac{{128}}{{15}}.\)
Tính tích phân sau:\(\int_0^{\frac{\pi }{2}} {(2x – 1)\cos xdx} = m\pi + n\) giá trị của m+n là:
-1
Tích phân\(\int_0^3 {\frac{x}{{1 + \sqrt {1 + x} }}} dx\) có giá trị bằng
\(\frac{5}{3}\).
Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y = {x^3},\,\,y = 0,\,\,x = 2\) quanh trục Ox:
\(V = \pi \int\limits_0^2 {{x^3}} dx.\)
Biết F(x) là nguyên hàm của hàm số \(y = \frac{1}{{x – 1}}\) và F(2) = 1. Khi đó F(3) bằng bao nhiêu:
\(\ln 2 + 1.\)
Nguyên hàm của hàm số \(f(x) = {7^x}\) là:
\(\,\,\frac{{{7^x}}}{{\ln 7}} + C.\)
Một học sinh giải bài toán tính \(I = \int\limits_0^{\frac{\pi }{4}} {\frac{{2.{e^{{\mathop{\rm tanx}\nolimits} }}dx}}{{{{\cos }^2}x}}} \) như sau:
Bước 1: Đặt \(t = ta{\rm{nx}} \Rightarrow {\rm{dt = }}\frac{1}{{{{\cos }^2}x}}dx\) Bước 2: Đổi cận: \(x = 0 \Rightarrow t = 0;x = \frac{\pi }{4} \Rightarrow t = 1\)
Bước 3: \(I = \int_0^1 {{e^t}dt} = \left. {{e^t}} \right|_0^1\) Bước 4: \(I = e – 1\)
Trong các cách giải trên, sai từ bước nào?
Bước 3.
Cho \(f\left( x \right)\) liên tục trên [0; 10] thỏa mãn: \(\int\limits_0^{10} {f\left( x \right)} dx = 7\) , \(\int\limits_6^{10} {f\left( x \right)} dx = 3\). Khi đó, \(\int\limits_0^6 {f\left( x \right)dx} \) có giá trị là:
21
Cho hai hàm số \(y = f(x),\,y = g(x)\) liên tục trên [a;b]. Hình phẳng giới hạn bởi đồ thị 2 hàm số \(y = f(x),\,y = g(x)\) và đường thẳng \(x{\rm{ }} = {\rm{ }}a,{\rm{ }}x{\rm{ }} = {\rm{ }}b\) có diện tích S đươc tính bởi công thức
\(S = \int\limits_a^b {[g\left( x \right) - f(x)]dx} .\)
Diện tích hình phẳng giới hạn bởi các đường cong \(y = {2^x}\),\(y = 2,\,\,x = 3\) là:
\(4 - 6\ln 2\).
Với t = \(\sqrt x \), tích phân \(\int\limits_1^4 {{e^{\sqrt {\rm{x}} }}} dx\) bằng tích phân nào sau đây?
\(\int\limits_1^2 {{e^t}} dt.\)
Giá trị của \(\int_0^1 {x.{e^{2x}}} dx\) bằng
\(\frac{1}{4}\left( {{e^2} + 1} \right)\).
Nguyên hàm của hàm số \(f(x) = {x^2} + \frac{3}{x} – 2\sqrt x \)là:
\(\frac{{{x^3}}}{3} + 3\ln \left| x \right| + \frac{4}{3}\sqrt {{x^3}} + C\)
Cho \(I = \int\limits_0^{\frac{\pi }{2}} {{{\sin }^4}} x.\cos xdx\). Đặt \(t = {\mathop{\rm s}\nolimits} {\rm{inx}}\), ta có I bằng:
\(\int\limits_0^{\frac{\pi }{2}} {{t^4}} dt\).
Giá trị của \(\int_0^{\frac{\pi }{4}} {\sin 2x} dx\) bằng
\(\frac{1}{2}\).
Kết quả:
Bạn đang tìm kiếm nơi tải sách PDF nhanh chóng và an toàn nhất? SachPDF.com.vn chính là giải pháp hoàn hảo dành cho bạn với thư viện sách số đa dạng. Sách PDF cung cấp file PDF chất lượng gốc, sắc nét và không bị chèn quảng cáo khó chịu. Chỉ với một cú nhấp chuột, bạn đã có thể download ngay cuốn sách mình yêu thích. Đừng chần chừ, hãy trải nghiệm kho sách miễn phí tại SachPDF.com.vn ngay hôm nay!
sách học ngoại ngữ pdf, sách học tiếng anh pdf, sách học tiếng hoa pdf, sách học tiếng nhật pdf, sách học tiếng hàn pdf, sách học tiếng pháp pdf, sách học tiếng đức pdf, Sách nuôi dạy con PDF, Sách Cẩm Nang Làm Cha Mẹ PDF, Sách Phát Triển Kỹ Năng - Trí Tuệ Cho Trẻ PDF, Sách Phương Pháp Giáo Dục Trẻ Các Nước PDF, Sách Dinh Dưỡng - Sức Khỏe Cho Trẻ PDF, Sách Giáo Dục Trẻ Tuổi Teen PDF, Sách Dành Cho Mẹ Bầu PDF