Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ.
Mệnh đề nào sau đây là đúng?
Hàm số \(y = f\left( x \right)\) nghịch biến trên khoảng \(\left( {1;\,5} \right)\).
Vậy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { – 1;1} \right)\).Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
\(\left( { - 1;0} \right)\).
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
\(y = {x^3} - 3{x^2} + 3x + 5\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ bên dưới.
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
\(\left( {0;\,2} \right)\).
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng về hàm số đó?
Đồng biến trên khoảng \(\left( { - 1;0} \right)\).
Cho hàm số \(y = f(x)\) có đồ thị như hình dưới đây.
.Hãy chọn đáp án đúng.
Hàm số đồng biến trên \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\).
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ bên.
Mệnh đề nào sau đây là sai?
Hàm số đã cho đồng biến trên khoảng \(\left( {3;{\mkern 1mu} {\mkern 1mu} + \infty } \right)\).
Hàm số \(y = {x^4} – 2{x^2} + 1\) đồng biến trên khoảng nào?
\(\forall x \in \mathbb{R}\).
.Hàm số \(y = {x^4} – 2{x^2} + 1\) đồng biến trên mỗi khoảng \(\left( { – 1;0} \right){\mkern 1mu} ;{\text{ }}\left( {1; + \infty } \right)\).Hàm số \(y = {x^3} – 3x + 1\) nghịch biến trên khoảng nào sau đây?
\(\left( { - 1;1} \right)\).
Từ bảng biến thiên suy ra hàm số nghịch biến trên khoảng \(\left( { – 1,1} \right)\).Cho hàm số \(f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = {x^3}{\left( {x – 1} \right)^2}\left( {x + 2} \right)\). Khoảng nghịch biến của hàm số là
\(\left( { - \infty ; - 2} \right);\,\left( {0; + \infty } \right)\).
Vậy hàm số nghịch biến trên khoảng \(\left( { – 2;0} \right)\)Kết quả:
Bạn đang tìm kiếm nơi tải sách PDF nhanh chóng và an toàn nhất? SachPDF.com.vn chính là giải pháp hoàn hảo dành cho bạn với thư viện sách số đa dạng. Sách PDF cung cấp file PDF chất lượng gốc, sắc nét và không bị chèn quảng cáo khó chịu. Chỉ với một cú nhấp chuột, bạn đã có thể download ngay cuốn sách mình yêu thích. Đừng chần chừ, hãy trải nghiệm kho sách miễn phí tại SachPDF.com.vn ngay hôm nay!
sách học ngoại ngữ pdf, sách học tiếng anh pdf, sách học tiếng hoa pdf, sách học tiếng nhật pdf, sách học tiếng hàn pdf, sách học tiếng pháp pdf, sách học tiếng đức pdf, Sách nuôi dạy con PDF, Sách Cẩm Nang Làm Cha Mẹ PDF, Sách Phát Triển Kỹ Năng - Trí Tuệ Cho Trẻ PDF, Sách Phương Pháp Giáo Dục Trẻ Các Nước PDF, Sách Dinh Dưỡng - Sức Khỏe Cho Trẻ PDF, Sách Giáo Dục Trẻ Tuổi Teen PDF, Sách Dành Cho Mẹ Bầu PDF