1. sachpdf-6db.pages.dev
  2. ///

Đề Kiểm Tra Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 3

Đề Kiểm Tra: Đề Kiểm Tra Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 3

Câu 1:

Trong các hàm số sau, hàm số nào có tập xác định là \(\mathbb{R}\)?

Hàm số \(y = {x^{2025}} + {x^2} + 5\) là hàm đa thức bậc 2025 nên tập xác định là \(\mathbb{R}\).
Câu 2:

Tập xác định của hàm số \(y = \frac{{x + 1}}{{x + 2}}\) là:

Điều kiện xác định: \(x + 2 \ne 0 \Leftrightarrow x \ne – 2\)Vậy tập xác định của hàm số \(y = \frac{{x + 1}}{{x + 2}}\) là \(D = \mathbb{R}\backslash \left\{ { – 2} \right\}\)
Câu 3:

Tập xác định của hàm số \(y = \frac{{x + 2}}{{{{\left( {x – 3} \right)}^2}}}\) là

Điều kiện: \(x – 3\, \ne 0\, \Leftrightarrow x\, \ne 3\,.\)TXĐ: \(\mathbb{R}\backslash \left\{ 3 \right\}.\)
Câu 4:

Tập xác định của hàm số \(y = \frac{{3 – x}}{{{x^2} – 5x – 6}}\) là

Điều kiện \({x^2} – 5x – 6 \ne 0 \Rightarrow \left\{ \begin{gathered} x \ne – 1 \hfill \\ x \ne 6 \hfill \\ \end{gathered} \right.\).Vậy \(D = \mathbb{R}\backslash \left\{ { – 1;6} \right\}\).
Câu 5:

Tìm tập xác định D của hàm số \(y = \frac{{x + 1}}{{\left( {x + 1} \right)\left( {{x^2} – 4} \right)}}\).

Điều kiện xác định: \(\left\{ \begin{gathered} x + 1 \ne 0 \hfill \\ {x^2} – 4 \ne 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \ne – 1 \hfill \\ x \ne \pm 2 \hfill \\ \end{gathered} \right.\).

Vậy \(D = \mathbb{R}\backslash \left\{ { – 1; \pm 2} \right\}\).

Lưu ý: Nếu rút gọn \(y = \frac{1}{{{x^2} – 4}}\) rồi khẳng định \(D = \mathbb{R}\backslash \left\{ { \pm 2} \right\}\) là sai. Vì với \(x = – 1\) thì biểu thức ban đầu \(\frac{{x + 1}}{{\left( {x + 1} \right)\left( {{x^2} – 4} \right)}}\) không xác định.
Câu 6:

Tập xác định của hàm số \(y = \sqrt {8 – 2x} – x\) là

Điều kiện xác định của hàm số là \(8 – 2x \geqslant 0\)\( \Leftrightarrow x \leqslant 4\), nên tập xác định là \(\left( { – \infty ;4} \right]\).
Câu 7:

Tập xác định của hàm số \(y = \frac{{3x + 4}}{{\sqrt {x – 1} }}\)là

Điều kiện xác định của hàm số là \(x – 1 > 0 \Leftrightarrow x > 1\).Vậy tập xác định của hàm số là \(D = \left( {1; + \infty } \right)\).
Câu 8:

Tìm tập xác định \(D\)của hàm số \(y = \sqrt {2 – x} – \frac{4}{{\sqrt {x + 4} }}\).

Hàm số xác định khi và chỉ khi \(\left\{ \begin{gathered} 2 – x \geqslant 0 \hfill \\ x + 4 > 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \leqslant 2 \hfill \\ x > – 4 \hfill \\ \end{gathered} \right..\)Vậy \(D = \left( { – 4;2} \right]\).
Câu 9:

Tìm tập xác định của hàm số \(y = \sqrt {x + 1} + \sqrt {x + 2} + \sqrt {x + 3} \).

\(\left\{ \begin{gathered} x + 1 \geqslant 0 \hfill \\ x + 2 \geqslant 0 \hfill \\ x + 3 \geqslant 0 \hfill \\ \end{gathered} \right. \Leftrightarrow \left\{ \begin{gathered} x \geqslant – 1 \hfill \\ x \geqslant – 2 \hfill \\ x \geqslant – 3 \hfill \\ \end{gathered} \right. \Leftrightarrow x \geqslant – 1\)
Câu 10:

Tìm tất cả các giá trị thực của tham số \(m\)để hàm số \(y = \frac{{{x^2} + 2m + 2}}{{x – m}}\)xác định trên khoảng \(\left( { – 1;0} \right)\).

Hàm số đã cho xác định \( \Leftrightarrow x \ne m\).Khi đó tập xác định của hàm số là: \(D = \left( { – \infty ;m} \right) \cup \left( {m; + \infty } \right)\).Yêu cầu bài toán\( \Leftrightarrow \left( { – 1;0} \right) \subset D \Leftrightarrow \left[ \begin{gathered} m \geqslant 0 \hfill \\ m \leqslant – 1 \hfill \\ \end{gathered} \right.\).

Các lựa chọn đã được chọn:

Kết quả: 

  • Câu 1
  • Câu 2
  • Câu 3
  • Câu 4
  • Câu 5
  • Câu 6
  • Câu 7
  • Câu 8
  • Câu 9
  • Câu 10

Đáp án: Đề Kiểm Tra Bài 15 Hàm Số Online Có Đáp Án Và Lời Giải-Đề 3

Đáp án câu 1:
A
\(y = {x^{2025}} + {x^2} + 5\).
Đáp án câu 2:
C
\(\mathbb{R}\backslash \left\{ { - 2} \right\}\).
Đáp án câu 3:
C
\(\mathbb{R}\backslash \left\{ 3 \right\}\).
Đáp án câu 4:
A
\(D = \mathbb{R}\backslash \left\{ { - 1;6} \right\}\)
Đáp án câu 5:
D
\(D = \mathbb{R}\backslash \left\{ { - 1; \pm 2} \right\}\)
Đáp án câu 6:
A
\(\left( { - \infty ;4} \right]\).
Đáp án câu 7:
C
\(\left( {1; + \infty } \right)\).
Đáp án câu 8:
B
\(D = \left( { - 4;2} \right]\).
Đáp án câu 9:
A
\(\left[ { - 1;\, + \infty } \right).\)
Đáp án câu 10:
C
\(\left[ \begin{gathered} m \geqslant 0 \hfill \\ m \leqslant - 1 \hfill \\ \end{gathered} \right.\).

Bạn đang tìm kiếm nơi tải sách PDF nhanh chóng và an toàn nhất? SachPDF.com.vn chính là giải pháp hoàn hảo dành cho bạn với thư viện sách số đa dạng. Sách PDF cung cấp file PDF chất lượng gốc, sắc nét và không bị chèn quảng cáo khó chịu. Chỉ với một cú nhấp chuột, bạn đã có thể download ngay cuốn sách mình yêu thích. Đừng chần chừ, hãy trải nghiệm kho sách miễn phí tại SachPDF.com.vn ngay hôm nay!

Về chúng tôi